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Motivation for LQR

Consider the system
&= Az + Bu y=Cx
Define @ = CTC and R = pI. We are minimizing the cost
V(w,u) = /O " ()T Qu(t) + u(t)” Ru(t)dt
= [ ooy + putey

We're minimizing the relative energy in the input and output signals

Large p — small input energy, output weakly controlled
Small p — large input energy, output strongly controlled

Note: Any minimal solution must be stable / take the state to the origin.
Why? Any non-zero steady-state solution will result in an infinite cost V'(z, u)

Linear Quadratic Regulator

Goal: Move from state z to the origin. (i.e., keep = ‘small’)

& = Az + Bu

Express the ‘cost’ of being in state z and applying input « with the function

I(z,u) = 2" Qx4+ u" Ru
The total ‘cost’ of following a particular trajectory is then

V(z,u) = /Om ()7 Q(t) + u(t)” Ru(t)dt

Assume: R > 0,Q > 0 (i.e, R is positive definite, and Q is positive semi-definite)

LQR: Find the ‘best’ trajectory

min V/(z(0),u(?)
st z(t) = Az(t) + Bu(t)

Motivation for LQR
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Consider the system

i = Az + Bu y=Cx
Define Q@ = CTC and R = pI. We are minimizing the cost
V(w,u) = / ()7 Q(t) + u(t)” Ru(t)dt
0

-/ Tyt + pu(t)?

0

We're minimizing the relative energy in the input and output signals

Real motivation

- Works well in practice

- Works seamlessly for multi-input, multi-output systems

- We can solve it (very common motivation in control!)

- Solution is simple, and easy to implement in embedded controller



LQR - Solution

Linear Quadratic Regulator

Consider a linear multivariable system z(¢) = Az(t) + Bu(t). Compute control law
u(t) = —Kz(t) such that the following performance criterion is minimized

min /0 ” 2t Qu(t) + u(t)” Ru(t)dt
st @(t) = Ax(t) + Bu(t)
where R is positive definite, and @ is positive semi-definite.
The optimal controller is u(t) = —Kxz(t) where
K=-R'B"P
and P = PT » 0 is the solution of the following Riccati Equation

ATP+PA—PBR 'BYP+Q=0

Feedback Invariants

A quantity is called a feedback invariant if its value does not depend on the choice
of the control input u(t),t > 0.

Lemma: Feedback Invariant

Let P be a symmetric matrix. For every control input u(¢), ¢ € [0,00] for which
z(t) — 0 as t — oo, we have that

/ - 2" (AT P + PA)x + 227 PBudt = —x(0)" Pz(0)
0
Proof:
/00 " (AT P + PA)x 4 22" PBudt = /Oo(mTAT +u" BT Pz + 2" P(Az + Bu)dt
0 Jo
= /OO @' Pz + 2" Pidt
_ /0'Oo d(z" Pz) dt

0 dt
= lim 27 (t)Pz(t) — z(0)T Pz(0)

t—o0

Proof Sketch

We want to minimize the function

JLQr = /O.OO ()T Qz(t) + u(t)” Ru(t)dt

Idea':

We will first write it as

Joon = Jo + /Oc(u(t) — o (1) R(u(t) — uo(t))dt

0
for some wug, where Jy does not depend on the control law chosen.

From this we can see that the optimal input is u(t) = wuo(t).

"We're following the proof of Joao P. Hespanha to avoid variational analysis

Square Completion

JLQr = / ()T Qz(t) + u(t)” Ru(t)dt
0
Add and subtract our feedback invariant

= 2(0)" Pz(0) + / " Qr 4+ u" Ru+ 2" (AT P + PA)x + 22" PBudt
Jo

Re-write the terms involving u
" Ru+ 22" PBu = (u — uo)" R(u — uo) — 2" PBR™'B” Px
where ug = —R™'BT P2

Which gives us

Jror = 2(0)T P2(0)+ / T Qu 4+ 2T (ATP 4+ PA)x — 2" PBR* BT Padt

0

+ /Ooo(u — o) " R(u — uo)dt



Compute linear controller to minimize the closed-loop performance metric
Joor = J:(O)TPJS(O)+/ 27 Qu+ 2" (ATP + PA)x — 2" PBR ' BT Pxdt
0

Q=q¢'c’C R=1
+/ (u — u0)T R(u — uo)dt for the system G(s) = fz whose state-space representation is
0
. . . 0 0 1
We see that the optimal solution is g= ol® aF ol ©
u=ug=—Kz K=R"'B'P Y= [0 1] -
and
Q+A"P+PA-PBR'B'P=0
8 9

Solve the ARE AP + PA— PBR™'BTP+Q =0 Solving gives
T 2
0o o] [P P P Plfo o p_ |V
2 \/5 3
1 0 P P P, P3| |1 O q e
ol r P, P 0 0 (Note that we've selected the real, positive definite solution)
+ =0
P, Ps3| |0| o] |P. P 0 ¢! The controller is
This results in four equations - V2q 'S
g K=R"B"P=|1 OH 2 g = [vas ¢
5 q q
—P2 2P, =0
P3 — P1P2 = 0
P;s—PiP,=0

q4fP2:O



Closed-loop System Add Reference Input

The closed-loop system is Add a reference input to the system
_ 2 . |=v2¢ ¢ 1 o
j_(A_BK)m_[\l/ﬁq g]z x:|: 1 o |7+ oI N7
y:[O 1].7: y:[O l]x

We want to steady-state gain between r and y to be one (i.e,, y = r at steady-state)

-1
1] - — —q¢° -

Nr —x=— V2 q ! Nr
0 1 0 0

Which has poles at q%(fl +1)

,\/5 —a?
We see that 0= [ ! !

T

- As ¢ — 0, the input energy is dominant, and the closed-loop poles become the —V2q ¢ -1 1] =
open-loop poles y= [0 1] z=- [0 1] [ 1 0 ] M Nr
- As g becomes large, the output energy is dominant, and the system spends

. . ) We choose N such thaty =
more input energy to bring the input to zero faster y=r

el [

Step Response Choice of Weights

Weights are usually determined through a trial-and-error process, but a good initial
1 setting is given by Bryson'’s rule.
= Bryson's rule scales the variables so that the maximum acceptable value for each
% . term is one.
o 051 n A ‘
Choose diagonal @ and R with
Qs = 1
108 : : : : : : : : : “ " maximum acceptable value of ?
1
Rj; = - 3
maximum acceptable value of u;
5 50 5 . ) . :
a Start with Bryson’s rule, and then increase or decrease the diagonal values to
o . .
- increase or decrease the convergence rates of the corresponding states.
0 =
| | | | | | | |
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; 0 1 0 0 0 . . . .
? ’ - Define the behaviour that we want to achieve via a value function
| |0 —0.1818 2.6727 0| |z 1.8182
gl — lo 0 0 1l lel ™ o |“ - Choose the control law that minimizes the value function
[/} 0 —0.4545 31.1818 o0l |6 4.5455 - LQR is very effective because:
) - The optimal controller is linear
- x - The value function is intuitive to tune
|1t 0 0 0] |2
YZlo o 1 of |o
9

Objectives for a 0.2m step in cart position z are:
- Settling time for z and 6 of less than 5 seconds

- Rise time for z of less than 0.5 seconds

- Pendulum angle 6 never more than 20 degrees
(0.35 radians) from the vertical

- Steady-state error of less than 2% for x and 6




